Tractography of Meyer's Loop asymmetries.

نویسندگان

  • Patricia Dreessen de Gervai
  • Uta N Sboto-Frankenstein
  • R Bruce Bolster
  • Sunny Thind
  • Marco L H Gruwel
  • Stephen D Smith
  • Boguslaw Tomanek
چکیده

PURPOSE The purpose of the current study was to use diffusion tensor imaging (DTI) to conduct tractography of the optic radiations (OR) and its component bundles and to assess both the degree of hemispheric asymmetry and the inter-subject variability of Meyer's Loop (ML). We hypothesized that there are significant left versus right differences in the anterior extent of ML to the temporal pole (TP) in healthy subjects. MATERIALS AND METHODS DTI data were acquired on a 3T Siemens MRI system using a single-shot Spin Echo EPI sequence. The dorsal, central and ML bundles of the OR were tracked and visualized in forty hemispheres of twenty healthy volunteers. The uncinate fasciculus (UF) was also tracked in these subjects so that it could be used as a distinct anatomical reference. Measurements were derived for the distance between ML-TP, ML and the temporal horn (ML-TH) and ML and the uncinate fasciculus (ML-UF). Paired difference t-tests were carried out with SPSS 14.0. RESULTS ML and the UF were successfully tracked and visualized in all 20 volunteers. Significant hemispheric asymmetries were found for all measurements with left distances shorter than the right (P<0.005). In 50% of the subjects the left ML-UF distance was ≤1.9 mm. CONCLUSION The results support our hypothesis and demonstrate that left ML-TP distances are significantly shorter than right ML-TP distances. These asymmetries are also reflected in shorter left distances between ML-TH and ML-UF. Moreover, these results are of interest to left-sided temporal lobe epilepsy surgery because it is not only more likely to disturb the anterior extent of ML but also renders the often closely located posterior aspect of the left UF more vulnerable to potential surgical impact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining Meyer's loop–temporal lobe resections, visual field deficits and diffusion tensor tractography

Anterior temporal lobe resection is often complicated by superior quadrantic visual field deficits (VFDs). In some cases this can be severe enough to prohibit driving, even if a patient is free of seizures. These deficits are caused by damage to Meyer's loop of the optic radiation, which shows considerable heterogeneity in its anterior extent. This structure cannot be distinguished using clinic...

متن کامل

Optic Radiation Tractography and Vision in Anterior Temporal Lobe Resection

OBJECTIVE Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy but may result in a contralateral superior visual field deficit (VFD) that precludes driving in the seizure-free patient. Diffusion tensor imaging (DTI) tractography can delineate the optic radiation preoperatively and stratify risk. It would be advantageous to incorporate display o...

متن کامل

Stability metrics for optic radiation tractography: Towards damage prediction after resective surgery

BACKGROUND An accurate delineation of the optic radiation (OR) using diffusion MR tractography may reduce the risk of a visual field deficit after temporal lobe resection. However, tractography is prone to generate spurious streamlines, which deviate strongly from neighboring streamlines and hinder a reliable distance measurement between the temporal pole and the Meyer's loop (ML-TP distance). ...

متن کامل

Diffusion tensor imaging tractography of the optic radiation for epilepsy surgical planning: A comparison of two methods

The optic radiation is a key white matter structure at risk during epilepsy surgery involving the temporal, parietal or occipital lobes. It shows considerable anatomical variability, cannot be delineated on clinical MRI sequences and damage may cause a disabling visual field deficit. Diffusion tensor imaging tractography allows non-invasive mapping of this pathway. Numerous methods have been pu...

متن کامل

Meyer's loop asymmetry and language lateralisation in epilepsy

OBJECTIVES Several studies have suggested an asymmetry in Meyer's loop in individuals, with the left loop anterior to the right. In this study we test the hypothesis that there is an association between Meyer's loop asymmetry (MLA) and language lateralisation. METHODS 57 patients with epilepsy were identified with language functional MRI (fMRI) and diffusion MRI acquisition. Language laterali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Epilepsy research

دوره 108 5  شماره 

صفحات  -

تاریخ انتشار 2014